C-type lectin COLEC10 is mainly produced by hepatic stellate cells and is involved in the pathogenesis of liver fibrosis.

  • Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M, Moshage H. Hepatic stellate cell senescence in liver fibrosis: characteristics, mechanisms and prospects. Mecha. Aging development. 2021;199:111572.

    CAS PubMed Google Scholar

  • Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterology. Liver alcohol. 2017;14:397–411.

    CAS PubMed Google Scholar

  • Yang Wen, He Hui, Wang Tao, Suning, Zhang Feng, Jiang Kai, et al. Single-cell transcriptome analysis reveals hepatic stellate cell activation pathways and myofibroblast origin during mouse liver fibrosis. Hepatology. 2021;74:2774–90.

    CAS PubMed Google Scholar

  • Fabre T, Barron AMS, Christensen SM, Asano S, Bound K, Lech MP, et al. Identification of broadly fibrotic macrophage subpopulations induced by type 3 inflammation. Science Immunology. 2023;8:eadd8945.

    CAS PubMed Google Scholar

  • Zhang M, Wu Z, Salas SS, Aguilar MM, Trillos-Almanza MC, Buist-Homan M, et al. Arginase 1 expression increases during hepatic stellate cell activation, promoting collagen synthesis. J Cell Biochem. 2023;124:808–17.

    CAS PubMed Google Scholar

  • Xi S, Zheng X, Li X, Jiang Y, Wu Y, Gong J, et al. Activated hepatic stellate cells induce the infiltration and formation of CD163(+) macrophages through the CCL2/CCR2 pathway. Front Med 2021;8:627927.

    Google Scholar

  • Charles R, Chou HS, Wang L, Fung JJ, Lu L, Qian S. Human hepatic stellate cells inhibit T cell responses through the B7-H1 pathway. transplant. 2013;96:17-24.

    CAS PubMed PubMed Center Google Scholar

  • Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R, Tacke F. Single-cell RNA sequencing identifies hepatic stellate cell and myofibroblast subpopulations in liver fibrosis. cell. 2019;8:503.

    PubMed PubMedCentral Google Scholar

  • De Smet V, Eysackers N, Merens V, Kazemzadeh Dastjerd M, Halder G, Verhulst S, et al. Initiation of hepatic stellate cell activation extends to chronic liver disease. Cell death diseases. 2021;12:1110.

    PubMed PubMedCentral Google Scholar

  • Fujiwara N, Kubota N, Crouchet E, Koneru B, Marquez CA, Jajoriya AK, et al. Molecular characterization of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Sci Transl Med. 2022;14:eabo4474.

    CAS PubMed PubMed Center Google Scholar

  • Martin-Mateos R, De Assuncao TM, Arab JP, Jalan-Sakrikar N, Yaqoob U, Greuter T, et al. Enhancer inhibition of zeste homolog 2 attenuates TGF-β-dependent hepatic stellate cell activation and liver fibrosis. Cell Molecules Gastrointestinal Hepatocytes. 2019;7:197–209.

    Postgraduate Entrance Exam Google Scholar

  • Filliol A, Saito Y, Nair A, Dapito DH, Yu LX, Ravichandra A, et al. Opposite roles of hepatic stellate cell subsets in hepatocarcinogenesis. nature. 2022;610:356–65.

    CAS PubMed PubMed Center Google Scholar

  • Selman L, Hansen S. Structure and function of collectin liver 1 (CL-L1) and collectin 11 (CL-11, CL-K1). Immunobiology. 2012;217:851–63.

    CAS PubMed Google Scholar

  • Morrison JK, DeRossi C, Alter IL, Nayar S, Giri M, Zhang C, et al. Single-cell transcriptomics reveals conserved cellular properties and fibrotic phenotypes in zebrafish and human livers. Liver Commune. 2022;6:1711–24.

    CAS PubMed PubMed Center Google Scholar

  • Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, et al. Inactivation of hepatic stellate cells during regression of liver fibrosis in mice. Gastroenterology. 2012;143:1073–83 e22.

    CAS PubMed Google Scholar

  • Huang Ping, Zhang Li, Gao Y, He Z, Yao D, Wu Z, et al. Direct reprogramming of human fibroblasts into functional and expandable hepatocytes. Cell stem cells. 2014;14:370–84.

    CAS PubMed Google Scholar

  • Gieseck RL 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Natural Immunology Revised Edition. 2018;18:62–76.

    CAS PubMed Google Scholar

  • Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, et al. Liver sinusoidal endothelial cells: physiology and role in liver disease. J Hepatol. 2017;66:212–27.

    CAS PubMed Google Scholar

  • Moore T, Williams JM, Becerra-Rodriguez MA, Dunne M, Kammerer R, Dveksler G. Pregnancy-specific glycoproteins: evolution, expression, function, and disease associations. reproduction. 2022;163:R11–R23.

    CAS PubMed Google Scholar

  • Intagliata NM, Caldwell SH, Tripodi A. Diagnosis, development, and treatment of portal vein thrombosis in cirrhotic and noncirrhotic patients. Gastroenterology. 2019;156:1582–99.e1.

    Postgraduate Entrance Exam Google Scholar

  • Stefan N, Häring HU, Cusi K. Nonalcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinology. 2019;7:313–24.

    Postgraduate Entrance Exam Google Scholar

  • Kluwe J, Wongsiriroj N, Troeger JS, Gwak GY, Dapito DH, Pradere JP, et al. Loss of retinol lipid droplets in hepatic stellate cells does not enhance liver fibrosis but reduces liver cancer development. Intestine. 2011;60:1260–8.

    CAS PubMed Google Scholar

  • Xu L, Hui AY, Albanis E, Arthur MJ, O’Byrne SM, Blaner WS, et al. Human hepatic stellate cell lines LX-1 and LX-2: new tools for analyzing liver fibrosis. Intestine. 2005;54:142–51.

    CAS PubMed PubMed Center Google Scholar

  • Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, et al. Non-cell-autonomous tumor suppression by p53. cell. 2013;153:449–60.

    CAS PubMed PubMed Center Google Scholar

  • Brown GD, Willment JA, Whitehead L. Role of C-type lectins in immunity and homeostasis. Natural Immunology Revised Edition. 2018;18:374–89.

    CAS PubMed Google Scholar

  • Ohtani K, Suzuki Y, Eda S, Kawai T, Kase T, Yamazaki H, et al. Molecular cloning of a novel human liver collectin (CL-L1). J Biol Chem 1999;274:13681–9.

    CAS PubMed Google Scholar

  • Hansen SWK, Aagaard JB, Bjerrum KB, Hejbol EK, Nielsen O, Schroder HD, et al. CL-L1 and CL-K1 exhibit broad tissue distribution, with high expression and colocalized expression in secretory epithelium and mucosa. Pre-Immunology. 2018;9:1757.

    PubMed PubMedCentral Google Scholar

  • Liu Z, Mo Hua, Liu R, Niu Y, Chen T, Xu Q, et al. Matrix stiffness regulates hepatic stellate cell activation into tumor-promoting myofibroblasts through E2F3-dependent signaling and modulates malignant progression. Cell death diseases. 2021;12:1134.

    CAS PubMed PubMed Center Google Scholar

  • Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, et al. P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology. 2018;154:2209–21.e14.

    CAS PubMed Google Scholar

  • Gajek G, Swierzko AS, Cedzynski M. Association of MASP1/3, COLEC10 and COLEC11 gene polymorphisms with 3MC syndrome. Int J Mol Sci 2020;21:5483.

    PubMed PubMedCentral Google Scholar

  • Dobó J, Pál G, Cervenak L, Gál P. The emerging role of mannose-binding lectin-associated serine proteases (MASPs) in complement and other lectin pathways. Immunol Rev 2016;274:98–111.

    Postgraduate Entrance Exam Google Scholar

  • Rooryck C, Diaz-Font A, Osborn DP, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, et al. Mutations in the lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat Genette. 2011;43:197-203.

    CAS PubMed PubMed Center Google Scholar

  • Munye MM, Diaz-Font A, Ocaka L, Henriksen ML, Lees M, Brady A, et al. COLEC10 is mutated in 3MC patients and regulates early craniofacial development. PLoS Gene. 2017;13:e1006679.

    PubMed PubMedCentral Google Scholar

  • Cai Mingmin, Chen Deming, Xiao Lixin, Li Shengsong, Liao Changhua, Li Jie, etc. COLEC10 induces endoplasmic reticulum stress and suppresses hepatocellular carcinoma by occupying GRP78. Laboratory Res 2023;103:100130.

    Postgraduate Entrance Exam Google Scholar

  • Bai KH, He Siyi, Shu Lili, Wang Wenda, Lin Siyi, Zhang Qingyun, et al. Identification of cancer stem cell signatures in liver cancer by WGCNA transcriptome stemness index analysis. Cancer Med 2020;9:4290–8.

    CAS PubMed PubMed Center Google Scholar

  • Wyatt RA, Crawford BD. Post-translational activation of Mmp2 correlates with active collagen degradation patterns during zebrafish tail development. Dev Biol 2021;477:155–63.

    CAS PubMed Google Scholar

  • Henriksen ML, Brandt J, Andrieu JP, Nielsen C, Jensen PH, Holmskov U, et al. Natural heteromeric complexes of collectin kidney 1 and collectin liver 1 are present in the circulation together with MASP and activate the complement system. J Immunol. 2013;191:6117–27.

    CAS PubMed Google Scholar

  • Smedbraten J, Sgedal S, Asberg A, Hartmann A, Rollag H, Mjoen G, et al. The lectin complement pathway hepatic collectin 1 and renal collectin 1 are associated with mortality after renal transplantation. Am J Translation. 2017;17:265–71.

    Chinese Academy of Sciences Google Scholar

  • Laursen TL, Sandahl TD, Stoy S, Schiodt FV, Lee WM, Vilstrup H, et al. Circulating mannan-binding lectin, M-, L-, H-ficolin, and collectin-liver-1 levels in patients with acute liver failure. Liver Int 2015;35:756–63.

    CAS PubMed Google Scholar

  • Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: pathophysiological mechanisms and treatment. JHEP Reports 2021;3:100316.

    PubMed PubMedCentral Google Scholar

  • Pan Jie, Wang Li, Gao Feng, An Y, Yin Y, Guo X, et al. Epidemiology of portal vein thrombosis in cirrhosis: a systematic review and meta-analysis. Eur J Intern Med 2022;104:21–32.

    Postgraduate Entrance Exam Google Scholar

  • Source link

    Leave a Comment